Transcription-dependent spreading of canonical yeast GATA factor across the body of highly expressed genes

Author:

Ronsmans Aria,Wery Maxime,Gautier Camille,Descrimes Marc,Dubois Evelyne,Morillon Antonin,Georis IsabelleORCID

Abstract

AbstractGATA transcription factors are highly conserved among eukaryotes and play roles in transcription of genes implicated in cancer progression and hematopoiesis. However, although their consensus binding sites have been well definedin vitro, thein vivoselectivity for recognition by GATA factors remains poorly characterized. Using ChIP-Seq, we identified the Dal80 GATA factor targets in yeast. Our data reveal Dal80 binding to a large set of promoters, sometimes independently of GATA sites. Strikingly, Dal80 was also detected across the body of promoter-bound genes, correlating with high, Dal80-sensitive expression. Mechanistic single-gene experiments showed that Dal80 spreading across gene bodies is independent of intragenic GATA sites but requires transcription elongation. Consistently, Dal80 co-purified with the post-initiation form of RNA Polymerase II. Our work suggests that GATA factors could play dual, synergistic roles during transcription initiation and post-initiation steps, promoting efficient remodeling of the gene expression program in response to environmental changes.Author SummaryGATA transcription factors are highly conserved among eukaryotes and play key roles in cancer progression and hematopoiesis. In budding yeast, four GATA transcription factors are involved in the response to the quality of nitrogen supply. We have determined the whole genome binding profile of one of them, Dal80, and revealed that it also binds across the body or promoter-bound genes. Our observation that ORF binding correlated with elevated transcription levels and exquisite Dal80 sensitivity suggests that GATA factors could play other, unexpected roles at post-initiation stages in eukaryotes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3