Illumina-based sequencing framework for accurate detection and mapping of influenza virus defective interfering particle-associated RNAs

Author:

Alnaji Fadi G.,Holmes Jessica R.,Rendon Gloria,Vera J. Cristobal,Fields Chris,Martin Brigitte E.,Brooke Christopher B.

Abstract

AbstractThe mechanisms and consequences of defective interfering particle (DIP) formation during influenza virus infection remain poorly understood. The development of next generation sequencing (NGS) technologies has made it possible to identify large numbers of DIP-associated sequences, providing a powerful tool to better understand their biological relevance. However, NGS approaches pose numerous technical challenges including the precise identification and mapping of deletion junctions in the presence of frequent mutation and base-calling errors, and the potential for numerous experimental and computational artifacts. Here we detail an Illumina-based sequencing framework and bioinformatics pipeline capable of generating highly accurate and reproducible profiles of DIP-associated junction sequences. We use a combination of simulated and experimental control datasets to optimize pipeline performance and demonstrate the absence of significant artifacts. Finally, we use this optimized pipeline to generate a high-resolution profile of DIP-associated junctions produced during influenza virus infection and demonstrate how this data can provide insight into mechanisms of DIP formation. This work highlights the specific challenges associated with NGS-based detection of DIP-associated sequences, and details the computational and experimental controls required for such studies.

Publisher

Cold Spring Harbor Laboratory

Reference31 articles.

1. Incomplete Forms of Influenza Virus

2. Propagation of the PR8 strain of influenza A virus in chick embryos. II. The formation of incomplete virus following inoculation of large doses of seed virus;Acta Pathol Microbiol Scand,1951

3. The defective component of viral populations

4. Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing

5. Defective-interfering (DI) RNAs of influenza viruses: origin, structure, expression, and interference;Curr Top Microbiol Immunol,1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3