Abstract
AbstractThe μ-opioid receptor (μOR) is an important target for pain management and the molecular understanding of drug action will facilitate the development of better therapeutics. Here we show, using double electron-electron resonance (DEER) and single-molecule fluorescence resonance energy transfer (smFRET), how ligand-specific conformational changes of the μOR translate into a broad range of intrinsic efficacies at the transducer level. We identify several cytoplasmic receptor conformations interconverting on different timescales, including a pre-activated receptor conformation which is capable of G protein binding, and a fully activated conformation which dramatically lowers GDP affinity within the ternary complex. Interaction of β-arrestin-1 with the μOR core binding site appears less specific and occurs with much lower affinity than binding of G protein Gi.One-Sentence SummaryLigand-dependent conformational dynamics of the μ-opioid receptor determine downstream signaling efficacy.
Publisher
Cold Spring Harbor Laboratory
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献