A benchmark study on current GWAS models in admixed populations

Author:

Yang Zikun,Huaman Basilio Cieza,Reyes-Dumeyer Dolly,Montesinos Rosa,Soto-Añari Marcio,Custodio Nilton,Tosto GiuseppeORCID

Abstract

AbstractObjectiveThe performances of popular Genome-wide association study (GWAS) models haven’t been examined yet in a consistent manner under the scenario of genetic admixture, which introduces several challenging aspects such as heterogeneity of minor allele frequency (MAF), a wide spectrum of case-control ratio, and varying effect sizes etc.MethodsWe generated a cohort of synthetic individuals (N=19,234) that simulates 1) a large sample size; 2) two-way admixture [Native American-European ancestry] and 3) a binary phenotype. We then examined the inflation factors produced by three popular GWAS tools: GMMAT, SAIGE, and Tractor. We also computed power calculations under different MAFs, case-control ratios, and varying ancestry percentages. Then, we employed a cohort of Peruvians (N=249) to further examine the performances of the testing models on 1) real genetic data and 2) small sample sizes. Finally, we validated these findings using an independent Peruvian cohort (N=109) included in 1000 Genome project (1000G).ResultIn the synthetic cohort, SAIGE performed better than GMMAT and Tractor in terms of type-I error rate, especially under severe unbalanced case-control ratio. On the contrary, power analysis identified Tractor as the best method to pinpoint ancestry-specific causal variants, but showed decreased power when no adequate heterogeneity of the true effect sizes was simulated between ancestries. The real Peruvian data showed that Tractor is severely affected by small sample sizes, and produced severely inflated statistics, which we replicated in the 1000G Peruvian cohort.DiscussionThe current study illustrates the limitations of available GWAS tools under different scenarios of genetic admixture. We urge caution when interpreting results under complex population scenarios.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3