A CRISPR-drug perturbational map for identifying new compounds to combine with commonly used chemotherapeutics

Author:

Lee Hyeong-MinORCID,Wright William C.,Pan Min,Low Jonathan,Currier Duane,Fang Jie,Singh Shivendra,Nance Stephanie,Delahunty Ian,Kim YunaORCID,Chapple Richard H.,Zhang Yinwen,Liu Xueying,Steele Jacob A.,Qi Jun,Pruett-Miller Shondra M.,Easton John,Chen Taosheng,Yang Jun,Durbin Adam D.,Geeleher Paul

Abstract

ABSTRACTCombination chemotherapy is crucial for achieving durable cancer cures, however, developing safe and effective drug combinations has been a significant challenge. To improve this process, we conducted large-scale targeted CRISPR knockout screens in drug-treated cells, creating a genetic map of druggable genes that sensitize cells to commonly used chemotherapeutics. We prioritized neuroblastoma, the most common pediatric solid tumor, where 50% of high-risk patients do not survive. Our screen examined all druggable gene knockouts in 18 cell lines (10 neuroblastoma, 8 others) treated with 8 widely used drugs, resulting in 94,320 unique combination-cell line perturbations, which is comparable to the largest drug combination screens ever reported. Remarkably, using dense drug-drug rescreening, we found that the top CRISPR-nominated drug combinations were far more synergistic than standard-of-care combinations, suggesting existing combinations could be improved. As proof of principle, we discovered that inhibition of PRKDC, a component of the non-homologous end-joining pathway, sensitizes high-risk neuroblastoma cells to the standard-of-care drug doxorubicinin vitroandin vivousing PDX models. Our findings provide a valuable resource for the development of improved chemotherapeutic strategies and demonstrate the feasibility of using targeted CRISPR knockout to discover new combinations with common chemotherapeutics, a methodology with application across all cancers.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3