Improving Multichannel Raw Electroencephalography-based Diagnosis of Major Depressive Disorder via Transfer Learning with Single Channel Sleep Stage Data*

Author:

Ellis Charles A.ORCID,Sattiraju Abhinav,Miller Robyn L.ORCID,Calhoun Vince D.ORCID

Abstract

AbstractAs the field of deep learning has grown in recent years, its application to the domain of raw resting-state electroencephalography (EEG) has also increased. Relative to traditional machine learning methods or deep learning methods applied to manually engineered features, there are fewer methods for developing deep learning models on small raw EEG datasets. One potential approach for enhancing deep learning performance, in this case, is the use of transfer learning. While a number of studies have presented transfer learning approaches for manually engineered EEG features, relatively few approaches have been developed for raw resting-state EEG. In this study, we propose a novel EEG transfer learning approach wherein we first train a model on a large publicly available single-channel sleep stage classification dataset. We then use the learned representations to develop a classifier for automated major depressive disorder diagnosis with raw multichannel EEG. Statistical testing reveals that our approach significantly improves the performance of our model (p < 0.05), and we also find that the performance of our approach exceeds that of many previous studies using both engineered features and raw EEG. We further examine how transfer learning affected the representations learned by the model through a pair of explainability analyses, identifying key frequency bands and channels utilized across models. Our proposed approach represents a significant step forward for the domain of raw resting-state EEG classification and has broader implications for use with other electrophysiology and time-series modalities. Importantly, it has the potential to expand the use of deep learning methods across a greater variety of raw EEG datasets and lead to the development of more reliable EEG classifiers.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3