Abstract
AbstractGenomes have a highly organised architecture (non-random organisation of functional and non-functional genetic elements within chromosomes) that is essential for many biological functions, particularly, gene expression and reproduction. Despite the need to conserve genome architecture, a surprisingly high level of structural variation has been observed within species. As species separate and diverge, genome architecture also diverges, becoming increasingly poorly conserved as divergence time increases. However, within plant genomes, the processes of genome architecture divergence are not well described. Here we use long-read sequencing andde novoassembly of 33 phylogenetically diverse, wild and naturally evolvingEucalyptusspecies, covering 1-50 million years of diverging genome evolution to measure genome architectural conservation and describe architectural divergence. The investigation of these genomes revealed that following lineage divergence genome architecture is highly fragmented by rearrangements. As genomes continue to diverge, the accumulation of mutations and subsequent divergence beyond recognition of rearrangements becomes the primary driver of genome divergence. The loss of syntenic regions also contribute to genome divergence, but at a slower pace than rearrangements. We hypothesise that duplications and translocations are potentially the greatest contributors toEucalyptusgenome divergence.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献