Interrogation of dynamic glucose-enhanced MRI and fluorescence-based imaging reveals a perturbed glymphatic network in Huntington’s disease

Author:

Liu Hongshuai,Chen Lin,Zhang Chuangchuang,Liu Chang,Li Yuguo,Cheng Liam,Wei Zhiliang,Zhang Ziqin,Lu Hanzhang,van Zijl Peter C. M.,Iliff Jeffrey J.,Xu Jiadi,Duan WenzhenORCID

Abstract

ABSTRACTHuntington’s disease (HD) is a neurodegenerative disorder that presents with progressive motor, mental, and cognitive impairment leading to early disability and mortality. The accumulation of mutant huntingtin protein aggregates in neurons is a pathological hallmark of HD. The glymphatic system, a brain-wide perivascular network, facilitates the exchange of interstitial fluid (ISF) and cerebrospinal fluid (CSF), supporting interstitial solute clearance including abnormal proteins from mammalian brains. In this study, we employed dynamic glucose-enhanced (DGE) MRI to measure D-glucose clearance from CSF as a tool to assess CSF clearance capacity to predict glymphatic function in a mouse model of HD. Our results demonstrate significantly diminished CSF clearance efficiency in premanifest zQ175 HD mice. The impairment of CSF clearance of D-glucose, measured by DGE MRI, worsened with disease progression. These DGE MRI findings in compromised glymphatic function in HD mice were further confirmed with fluorescence-based imaging of glymphatic CSF tracer influx, suggesting an impaired glymphatic function in premanifest stage of HD. Moreover, expression of the astroglial water channel aquaporin-4 (AQP4) in the perivascular compartment, a key mediator of glymphatic function, was significantly diminished in both HD mouse brain as well as postmortem human HD brain. Our data, acquired using a clinically translatable MRI approach, indicate a perturbed glymphatic network in the HD brain as early as in the premanifest stage. Further validation of these findings in clinical studies should provide insights into potential of glymphatic clearance as a HD biomarker and for glymphatic functioning as a disease-modifying therapeutic target for HD.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3