Distinct roles of PV and Sst interneurons in visually-induced gamma oscillations

Author:

Onorato Irene,Tzanou Athanasia,Schneider Marius,Uran Cem,Broggini Ana,Vinck MartinORCID

Abstract

AbstractSensory processing relies on interactions between excitatory and inhibitory neurons, which are often coordinated by 30-80Hz gamma oscillations. However, the specific contributions of distinct interneurons to gamma synchronization remain unclear. We performed high-density recordings from V1 in awake mice and used optogenetics to identify PV+ (Parvalbumin) and Sst+ (Somatostatin) interneurons. PV interneurons were highly phase-locked to visually-induced gamma oscillations. Sst cells were heterogeneous, with only a subset of narrow-waveform cells showing strong gamma phase-locking. Interestingly, PV interneurons consistently fired at an earlier phase in the gamma cycle (≈6ms or 60 degrees) than Sst interneurons. Consequently, PV and Sst activity showed differential temporal relations with excitatory cells. In particular, the 1st and 2nd spikes in burst events, which were strongly gamma phase-locked, shortly preceded PV and Sst activity, respectively. These findings indicate a primary role of PV interneurons in synchronizing excitatory cells and suggest that PV and Sst interneurons control the excitability of somatic and dendritic neural compartments with precise time delays coordinated by gamma oscillations.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3