Inhibitory feedback enables predictive learning of multiple sequences in neural networks

Author:

Saponati MatteoORCID,Vinck MartinORCID

Abstract

AbstractAnticipating future events is a key computational task for neuronal networks. Experimental evidence suggests that reliable temporal sequences in neural activity play a functional role in the association and anticipation of events in time. However, how neurons can differentiate and anticipate multiple spike sequences remains largely unknown. We implement a learning rule based on predictive processing, where neurons exclusively fire for the initial, unpredictable inputs in a spiking sequence, leading to an efficient representation with reduced post-synaptic firing. Combining this mechanism with inhibitory feedback leads to sparse firing in the network, enabling neurons to selectively anticipate different sequences in the input. We demonstrate that intermediate levels of inhibition are optimal to decorrelate neuronal activity and to enable the prediction of future inputs. Notably, each sequence is independently encoded in the sparse, anticipatory firing of the network. Overall, our results demonstrate that the interplay of self-supervised predictive learning rules and inhibitory feedback enables fast and efficient classification of different input sequences.

Publisher

Cold Spring Harbor Laboratory

Reference70 articles.

1. Jakob Hohwy . The predictive mind. OUP Oxford, 2013.

2. “Experience-dependent asymmetric shape of hippocampal receptive fields;In: Neuron,2000

3. “Anticipatory activity in primary motor cortex codes memorized movement sequences;In: Neuron,2005

4. “Activity recall in a visual cortical ensemble;In: Nature neuroscience,2012

5. “Learned spatiotemporal sequence recognition and prediction in primary visual cortex;In: Nature neuroscience,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3