Temporal spiking sequences in visual cortex carry unique information about natural movies

Author:

Sotomayor-Gómez Boris,Battaglia Francesco P.,Vinck MartinORCID

Abstract

ABSTRACTInformation in the nervous system is encoded by the spiking patterns of large populations of neurons. The analysis of such high-dimensional data is typically restricted to simple, arbitrarily defined features like spike rates, which discards information in the temporal structure of spike trains. Here, we use a recently developed method called SpikeShip based on optimal transport theory, which captures information from all of the relative spike-timing relations among neurons. We compared spike-rate and spike-timing codes in neural ensembles from six visual areas during natural video presentations. Temporal spiking sequences conveyed substantially more information about natural movies than population spike-rate vectors, especially for larger number of neurons. As previously, shown, population rate vectors exhibited substantial drift across repetitions and between blocks. Conversely, encoding through temporal sequences was stable over time, and did not show representational drift both within and between blocks. These findings reveal a purely spike-based neural code that is based on relative spike timing relations in neural ensembles alone.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3