Designer DNA NanoGripper

Author:

Zhou Lifeng,Xiong Yanyu,Cooper Laura,Shepherd Skye,Song Tingjie,Dwivedy Abhisek,Rong Lijun,Wang Tong,Cunningham Brian T.,Wang XingORCID

Abstract

ABSTRACTDNA has shown great biocompatibility, programmable mechanical properties, and structural addressability at the nanometer scale, making it a versatile material for building high precision nanorobotics for biomedical applications. Herein, we present design principle, synthesis, and characterization of a DNA nanorobotic hand, called the “NanoGripper”, that contains a palm and four bendable fingers as inspired by human hands, bird claws, and bacteriophages evolved in nature. Each NanoGripper finger has three phalanges connected by two flexible and rotatable joints that are bendable in response to binding to other entities. Functions of the NanoGripper have been enabled and driven by the interactions between moieties attached to the fingers and their binding partners. We showcase that the NanoGripper can be engineered to interact with and capture various objects with different dimensions, including gold nanoparticles, gold NanoUrchins, and SARS-CoV-2 virions. When carrying multiple DNA aptamer nanoswitches programmed to generate fluorescent signal enhanced on a photonic crystal platform, the NanoGripper functions as a sensitive viral biosensor that detects intact SARS-CoV-2 virions in human saliva with a limit of detection of ∼ 100 copies/mL, providing RT-PCR equivalent sensitivity. Additionally, we use confocal microscopy to visualize how the NanoGripper-aptamer complex can effectively block viral entry into the host cells, indicating the viral inhibition. In summary, we report the design, synthesis, and characterization of a complex nanomachine that can be readily tailored for specific applications. The study highlights a path toward novel, feasible, and efficient solutions for the diagnosis and therapy of other diseases such as HIV and influenza.One-sentence summaryDesign, synthesis, characterization, and functional showcase of a human-hand like designer DNA nanobot

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3