Soft Micro- and Nanorobotics

Author:

Hu Chengzhi1,Pané Salvador1,Nelson Bradley J.1

Affiliation:

1. Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8092 Zurich, Switzerland;, ,

Abstract

Micro- and nanorobots can perform a number of tasks at small scales, such as minimally invasive diagnostics, targeted drug delivery, and localized surgery. During the past decade, the field has been transformed in many ways, one of the most significant being a transition from hard and rigid micro- and nanostructures to soft and flexible architectures. Inspired by the dynamics of flexible microorganisms, researchers have focused on developing miniaturized soft components such as actuators, sensors, hinges, joints, and reservoirs to create soft micro- and nanoswimmers. The use of organic structures such as polymers and supramolecular ensembles as functional components has brought more complex features to these devices, such as advanced locomotion strategies and stimulus-triggered shape transformations, as well as other capabilities. A variety of microorganisms and contractile mammalian cells have also been utilized as microengines and integrated with functional synthetic materials, producing bending or deformation of the functional materials to initiate motion. In this review, we consider several types of soft micro- and nanorobots in terms of their architecture and design, and we describe their locomotion mechanisms and applications.

Publisher

Annual Reviews

Cited by 165 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3