Abstract
AbstractMetazoan development relies on the formation and remodeling of cell-cell contacts. Dynamic reorganization of adhesion receptors and the actomyosin cell cortex in space and time play a central role in cell-cell contact formation and maturation. Yet, how this process is mechanistically achieved remains unclear. Here, by building a biomimetic assay composed of progenitor cells adhering to supported lipid bilayers functionalized with E-cadherin ectodomains, we show that cortical Actin flows, driven by the depletion of Myosin-2 at the cell contact center, mediate the dynamic reorganization of adhesion receptors and cell cortex at the contact. E-cadherin-dependent downregulation of the small GTPase RhoA at the forming contact leads to both a depletion of Myosin-2 and a decrease of F-actin at the contact center. This depletion of Myosin-2 causes centrifugal F-actin flows, leading to further accumulation of F-actin at the contact rim and the progressive redistribution of E-cadherin from the contact center to the rim. Eventually, this combination of actomyosin downregulation and flows at the contact determine the characteristic molecular organization, with E-cadherin and F-actin accumulating at the contact rim, where they are needed to mechanically link the contractile cortices of the adhering cells.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献