Abstract
Cellular processes are carried out by many interacting genes and their study and optimization requires multiple levers by which they can be independently controlled. The most common method is via a genetically-encoded sensor that responds to a small molecule (an “inducible system”). However, these sensors are often suboptimal, exhibiting high background expression and low dynamic range. Further, using multiple sensors in one cell is limited by cross-talk and the taxing of cellular resources. Here, we have developed a directed evolution strategy to simultaneously select for less background, high dynamic range, increased sensitivity, and low crosstalk. Libraries of the regulatory protein and output promoter are built based on random and rationally-guided mutations. This is applied to generate a set of 12 high-performance sensors, which exhibit >100-fold induction with low background and cross-reactivity. These are combined to build a single “sensor array” and inserted into the genomes ofE. coliMG1655 (wild-type), DH10B (cloning), and BL21 (protein expression). These “Marionette” strains allow for the independent control of gene expression using 2,4-diacetylphophloroglucinol (DAPG), cuminic acid (Cuma), 3-oxohexanoyl-homoserine lactone (OC6), vanillic acid (Van), isopropyl β-D-1-thiogalactopyranoside (IPTG), anhydrotetracycline (aTc), L-arabinose (Ara), choline chloride (Cho), naringenin (Nar), 3,4-dihydroxybenzoic acid (DHBA), sodium salicylate (Sal), and 3-hydroxytetradecanoyl-homoserine lactone (OHC14).
Publisher
Cold Spring Harbor Laboratory