Abstract
AbstractBiochemical interactions in systems and synthetic biology are often modeled with chemical reaction networks (CRNs). CRNs provide a principled modeling environment capable of expressing a huge range of biochemical processes. In this paper, we present a software toolbox, written in Python, that complies high-level design specifications to CRN representations. This compilation process offers four advantages. First, the building of the actual CRN representation is automatic and outputs Systems Biology Markup Language (SBML) models compatible with numerous simulators. Second, a library of modular biochemical components allows for different architectures and implementations of biochemical circuits to be represented succinctly with design choices propagated throughout the underlying CRN automatically. This prevents the often occurring mismatch between high-level designs and model dynamics. Third, high-level design specification can be embedded into diverse biomolecular environments, such as cell-free extracts and in vivo milieus. Finally, our software toolbox has a parameter database, which allows users to rapidly prototype large models using very few parameters which can be customized later. By using BioCRNpyler, users can easily build, manage, and explore sophisticated biochemical models using diverse biochemical implementations, environments, and modeling assumptions.
Publisher
Cold Spring Harbor Laboratory
Reference62 articles.
1. Alon, U. An introduction to systems biology: design principles of biological circuits; CRC press, 2019.
2. Vecchio, D. D. ; Murray, R. M. Biomolecular Feedback Systems; Princton University Press, 2014.
3. The MathWorks, Inc, MATLAB Simbiology Toolbox.
4. libRoadRunner: a high performance SBML simulation and analysis library: Table 1.
5. BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献