HP1 oligomerization compensates for low-affinity H3K9me recognition and provides a tunable mechanism for heterochromatin-specific localization

Author:

Biswas SaikatORCID,Karslake Joshua D.ORCID,Chen ZiyuanORCID,Farhat AliORCID,Freddolino Peter L.ORCID,Biteen Julie S.ORCID,Ragunathan KaushikORCID

Abstract

ABSTRACTHP1 proteins bind with low affinity but high specificity to histone H3 lysine 9 methylation (H3K9me), forming transcriptionally inactive genomic compartments referred to as heterochromatin. How HP1 proteins traverse a complex and crowded chromatin landscape on the millisecond timescale and yet recognize H3K9me with high specificity remains paradoxical. Here, we visualize the single-molecule dynamics of an HP1 homolog, the fission yeast Swi6, in its native chromatin environment. By analyzing the motions of individual Swi6 molecules, we identify mobility states that map to discrete biochemical intermediates. Using mutants that perturb Swi6 H3K9me recognition, oligomerization, or nucleic acid binding, we parse the mechanism by which each biochemical property affects protein dynamics. We find that rather than enhancing chromatin binding, nucleic acid interactions, compete with and titrates Swi6 away from heterochromatin. However, as few as four tandem Swi6 chromodomains are necessary and sufficient to restore H3K9me-dependent localization. Our studies propose propose that HP1 oligomerization stabilizes higher-order protein configurations of a defined stoichiometry that facilitates high-specificity H3K9me recognition and outcompetes the inhibitory effects of nucleic acid-binding.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3