Abstract
AbstractRibosomal RNA genes (rDNA) are highly unstable and susceptible to rearrangement due to active transcription and their repetitive nature. Compartmentalization of rDNA in the nucleolus suppresses uncontrolled recombination. However, broken repeats must be released to the nucleoplasm to allow repair by homologous recombination. The process of rDNA relocation is conserved from yeast to humans, but the underlying molecular mechanisms are currently unknown. Here we show that DNA damage induces phosphorylation of the CLIP-cohibin complex, releasing membrane-tethered rDNA from the nucleolus in Saccharomyces cerevisiae. Downstream of phosphorylation, SUMOylation targets CLIP-cohibin for disassembly mediated by the Cdc48/p97 chaperone, which recognizes SUMOylated CLIP-cohibin through its cofactor, Ufd1. Consistent with a conserved mechanism, UFD1L depletion impairs rDNA release in human cells. The dynamic and regulated assembly and disassembly of the rDNA-tethering complex is therefore a key determinant of nucleolar rDNA release and genome integrity.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献