Deep learning-based detection of COVID-19 using wearables data

Author:

Bogu Gireesh K.,Snyder Michael P.

Abstract

SummaryBackgroundCOVID-19 is an infectious disease caused by SARS-CoV-2 that is primarily diagnosed using laboratory tests, which are frequently not administered until after symptom onset. However, SARS-CoV-2 is contagious multiple days before symptom onset and diagnosis, thus enhancing its transmission through the population.MethodsIn this retrospective study, we collected 15 seconds to one-minute heart rate and steps interval data from Fitbit devices during the COVID-19 period (February 2020 until June 2020). Resting heart rate was computed by selecting the heart rate intervals where steps were zero for 12 minutes ahead of an interrogated time point. Data for each participant was divided into train or baseline by taking the days before the non-infectious period and test data by taking the days during the COVID-19 infectious period. Data augmentation was used to increase the size of the training days. Here, we developed a deep learning approach based on a Long Short-Term Memory Networks-based autoencoder, called LAAD, to predict COVID-19 infection by detecting abnormal resting heart rate in test data relative to the user’s baseline.FindingsWe detected an abnormal resting heart rate during the period of viral infection (7 days before the symptom onset and 21 days after) in 92% (23 out of 25 cases) of patients with laboratory-confirmed COVID-19. In 56% (14) of cases, LAAD detection identified cases in their pre-symptomatic phase whereas 36% (9 cases) were detected after the onset of symptoms with an average precision score of 0·91 (SD 0·13, 95% CI 0·854–0·967), a recall score of 0·36 (0·295, 0·232–0·487), and a F-beta score of 0·79 (0·226, 0·693–0·888). In COVID-19 positive patients, abnormal RHR patterns start 5 days before symptom onset (6·9 days in pre-symptomatic cases and 1·9 days later in post-symptomatic cases). COVID-19+ patients have longer abnormal resting heart rate periods (89 hours or 3·7 days) as compared to healthy individuals (25 hours or 1·1 days).InterpretationThese findings show that deep learning neural networks and wearables data are an effective method for the early detection of COVID-19 infection. Additional validation data will help guide the use of this and similar techniques in real-world infection surveillance and isolation policies to reduce transmission and end the pandemic.FundingThis work was supported by NIH grants and gifts from the Flu Lab, as well as departmental funding from the Stanford Genetics department. The Google Cloud Platform costs were covered by Google for Education academic research and COVID-19 grant awards.Research in contextEvidence before the studyCOVID-19 resulted in up to 1·7 million deaths worldwide in 2020. COVID-19 detection using laboratory tests is usually performed after symptom onset. This delay can allow the spread of viral infection and can cause outbreaks. We searched PubMed, Google, and Google Scholar for research articles published in English up to Dec 1, 2020, using common search terms including “COVID-19 and wearables”, “Resting heart rate and viral infection”, “Resting heart rate and COVID-19”, “machine learning and COVID-19” and “deep-learning and COVID-19”. Previous studies have attempted to use an elevated resting heart rate as an indicator of viral infection. Although these studies have investigated the early prediction of COVID-19 using resting heart rate and other wearables data, studies to investigate a deep learning-based prediction model with performance evaluation metrics at the user level has not been reported.Added value of this studyIn this study, we created a deep-learning system that used wearables data such as abnormal resting heart rate to predict COVID-19 before the symptom onset. The deep-learning system was created using retrospective time-series datasets collected from 25 COVID-19+ patients, 11 non-COVID-19, and 70 healthy individuals. To our knowledge, this is the first deep-learning model to identify an early viral infection using wearables data at the user level. This study also greatly extends our previous phase-1 study and factors unpredictable behavior and time-series nature of the data, limited data size, and lack of data labels to evaluate performance metrics. The use of a real-time version of this model using more data along with user feedback may help to scale early detection as the number of patients with COVID-19 continues to grow.Implications of all the available evidenceIn the future, wearable devices may provide high-resolution sleep, temperature, saturated oxygen, respiration rate, and electrocardiogram, which could be used to further characterize an individual’s baseline and improve the deep-learning model performance for infectious disease detection. Using multi-sensor data with a real-time deep-learning model has the potential to alert individuals of illness prior to symptom onset and may greatly reduce the viral spread.

Publisher

Cold Spring Harbor Laboratory

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3