A tree-based explainable AI model for early detection of Covid-19 using physiological data

Author:

Talib Manar Abu,Afadar Yaman,Nasir Qassim,Nassif Ali Bou,Hijazi Haytham,Hasasneh Ahmad

Abstract

AbstractWith the outbreak of COVID-19 in 2020, countries worldwide faced significant concerns and challenges. Various studies have emerged utilizing Artificial Intelligence (AI) and Data Science techniques for disease detection. Although COVID-19 cases have declined, there are still cases and deaths around the world. Therefore, early detection of COVID-19 before the onset of symptoms has become crucial in reducing its extensive impact. Fortunately, wearable devices such as smartwatches have proven to be valuable sources of physiological data, including Heart Rate (HR) and sleep quality, enabling the detection of inflammatory diseases. In this study, we utilize an already-existing dataset that includes individual step counts and heart rate data to predict the probability of COVID-19 infection before the onset of symptoms. We train three main model architectures: the Gradient Boosting classifier (GB), CatBoost trees, and TabNet classifier to analyze the physiological data and compare their respective performances. We also add an interpretability layer to our best-performing model, which clarifies prediction results and allows a detailed assessment of effectiveness. Moreover, we created a private dataset by gathering physiological data from Fitbit devices to guarantee reliability and avoid bias.The identical set of models was then applied to this private dataset using the same pre-trained models, and the results were documented. Using the CatBoost tree-based method, our best-performing model outperformed previous studies with an accuracy rate of 85% on the publicly available dataset. Furthermore, this identical pre-trained CatBoost model produced an accuracy of 81% when applied to the private dataset. You will find the source code in the link: https://github.com/OpenUAE-LAB/Covid-19-detection-using-Wearable-data.git.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3