A single mutation attenuates both the transcription termination and RNA-dependent RNA polymerase activity of T7 RNA polymerase

Author:

Wu Hui,Wei Ting,Cheng Rui,Huang Fengtao,Lu Xuelin,Yan Yan,Yu Bingbing,Wang Xionglue,Liu Chenli,Zhu Bin

Abstract

ABSTRACTTranscription termination is one of the least understood processes of gene expression. As the prototype model for transcription studies, the single-subunit T7 RNA polymerase (RNAP) was known to response to two types of termination signals, while the mechanism underlying such termination especially the specific elements of the polymerase involved in is still unclear, due to the lack of a termination complex structure. Here we applied phage-assisted continuous evolution to obtain variants of T7 RNAP that can bypass the typical class I T7 terminator with stem-loop structure. Through in vivo selection and in vitro characterization, we discovered a single mutation S43Y that significantly decreased the termination efficiency of T7 RNAP at all transcription terminators tested. Coincidently, the S43Y mutation almost eliminates the RNA-dependent RNA polymerase (RdRp) of T7 RNAP without affecting the major DNA-dependent RNA polymerase (DdRp) activity of the enzyme, indicating the relationship between transcription termination and RdRp activity, and suggesting a model in which the stem-loop terminator induces the RdRp activity which competes with the ongoing DdRp activity to cause transcription termination. The T7 RNAP S43Y mutant as an enzymatic reagent for in vitro transcription reduces the undesired termination in run-off RNA synthesis and produces RNA with higher terminal homogeneity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3