A gelation transition enables the self-organization of bipolar metaphase spindles

Author:

Dalton Benjamin A.,Oriola David,Decker Franziska,Jülicher Frank,Brugués JanORCID

Abstract

The mitotic spindle is a highly dynamic bipolar structure that emerges from the self-organization of microtubules, molecular motors, and other proteins. Sustained motor-driven poleward flows of short dynamic microtubules play a key role in the bipolar organization of spindles. However, it is not understood how the local activity of motor proteins generates these large-scale coherent poleward flows. Here, we combine experiments and simulations to show that a gelation transition enables long-ranged microtubule transport causing spindles to self-organize into two oppositely polarized microtubule gels. Laser ablation experiments reveal that local active stresses generated at the spindle midplane propagate through the structure thereby driving global coherent microtubule flows. Simulations show that microtubule gels undergoing rapid turnover can exhibit long stress relaxation times, in agreement with the long-ranged flows observed in experiments. Finally, we show that either disrupting such flows or decreasing the network connectivity can lead to a microtubule polarity reversal in spindles both in the simulations and in the experiments. Thus, we uncover an unexpected connection between spindle rheology and architecture in spindle self-organization.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3