Abstract
ABSTRACTMicrotubules are generated at centrosomes, chromosomes, and within spindles during cell division. Whereas microtubule nucleation at the centrosome is well characterized, much remains unknown about where, when, and how microtubules are nucleated at chromosomes. To address these questions, we reconstituted microtubule nucleation from purified chromosomes in meiotic Xenopus egg extract and found that chromosomes alone can form spindles. We visualized microtubule nucleation at chromosomes using total internal reflection fluorescence microscopy to find that this occurs through branching microtubule nucleation. The initial branches nucleate near and towards kinetochores, helping explain how kinetochores might be efficiently captured. By depleting molecular motors, we find that the organization of the resultant polar branched networks is consistent with a theoretical model where the effectors for branching nucleation are released by chromosomes, forming a concentration gradient around them that spatially biases branching nucleation. In the presence of motors, these branched networks are organized into multipolar spindles.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献