Conditional deletion of HIF-1α provides new insight regarding the murine response to gastrointestinal infection with Salmonella Typhimurium

Author:

Robrahn Laura,Dupont Aline,Jumpertz Sandra,Zhang Kaiyi,Holland Christian H.ORCID,Guillaume Joël,Rappold Sabrina,Cerovic Vuk,Saez-Rodriguez JulioORCID,Hornef Mathias W.ORCID,Cramer ThorstenORCID

Abstract

AbstractThe hypoxia-inducible transcription factor 1 (HIF-1) has been shown to ameliorate different bacterial infections through enhancement of microbial killing. While the impact of HIF-1 on inflammatory diseases of the gut has been studied intensively, its function in bacterial infections of the intestine remains largely elusive. With the help of a publicly available gene expression data set, we could infer significant activation of the HIF-1 transcription factor after oral infection of mice with Salmonella Typhimurium. This prompted us to apply lineage-restricted deletion of the Hif1a locus in mice to examine cell type-specific functions of HIF-1 in this model. We show hypoxia-independent induction of HIF-1 activity upon Salmonella infection in the intestinal epithelium as well as in macrophages. Surprisingly, Hif1a deletion in intestinal epithelial cells impacted neither disease outcome nor inflammatory activity. The conditional knockout of Hif1a in myeloid cells enhanced the mRNA expression of the largely pro-inflammatory chemokine Cxcl2, revealing a potentially inflammatory effect of HIF-1 deficiency in myeloid cells in the gut in vivo. Again, the disease outcome was not affected. In vitro HIF-1-deficient macrophages showed an overall impaired transcription of pro-inflammatory factors, however, Salmonella bypassed direct intracellular, bactericidal HIF-1-dependent mechanisms in a Salmonella pathogenicity island (SPI)-2 independent manner. Taken together, our data suggest that HIF-1 in intestinal epithelial and myeloid cells is either dispensable or compensable in the immune defense against Salmonella Typhimurium.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3