Abstract
We have identified a 50-nucleotide enhancer from the human erythropoietin gene 3'-flanking sequence which can mediate a sevenfold transcriptional induction in response to hypoxia when cloned 3' to a simian virus 40 promoter-chloramphenicol acetyltransferase reporter gene and transiently expressed in Hep3B cells. Nucleotides (nt) 1 to 33 of this sequence mediate sevenfold induction of reporter gene expression when present in two tandem copies compared with threefold induction when present in a single copy, suggesting that nt 34 to 50 bind a factor which amplifies the induction signal. DNase I footprinting demonstrated binding of a constitutive nuclear factor to nt 26 to 48. Mutagenesis studies revealed that nt 4 to 12 and 19 to 23 are essential for induction, as substitutions at either site eliminated hypoxia-induced expression. Electrophoretic mobility shift assays identified a nuclear factor which bound to a probe spanning nt 1 to 18 but not to a probe containing a mutation which eliminated enhancer function. Factor binding was induced by hypoxia, and its induction was sensitive to cycloheximide treatment. We have thus defined a functionally tripartite, 50-nt hypoxia-inducible enhancer which binds several nuclear factors, one of which is induced by hypoxia via de novo protein synthesis.
Publisher
American Society for Microbiology
Subject
Cell Biology,Molecular Biology
Cited by
2226 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献