Abstract
Multi-photon microscopy has become a powerful tool to visualize the morphology and function of neural cells and circuits in the intact mammalian brain. Yet, tissue scattering, optical aberrations, and motion artifacts degrade the achievable image quality with depth. Here we developed a minimally invasive intravital imaging methodology by combining three-photon excitation, indirect adaptive optics correction, and active electrocardiogram gating to achieve near-diffraction limited resolution up to a depth of 1.2mm in the mouse brain. We demonstrate near-diffraction-limited imaging of deep cortical and sub-cortical dendrites and spines as well as of calcium transients in deep-layer astrocytes in vivo.
Publisher
Cold Spring Harbor Laboratory
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献