Direct focus sensing and shaping for high-resolution multi-photon imaging in deep tissue

Author:

Qin Zhongya,She ZhentaoORCID,Chen Congping,Wu Wanjie,Lau Jackie K.Y.,Ip Nancy Y.,Qu Jianan Y.

Abstract

AbstractHigh-resolution optical imaging of deep tissue in-situ such as the living brain is fundamentally challenging because of the aberration and scattering of light. In this work, we develop an innovative adaptive optics three-photon microscope based on direct focus sensing and shaping that can accurately measure and effectively compensate for both low- and high-order specimen-induced aberrations and recover near-diffraction-limited performance at depth. A conjugate adaptive optics configuration with remote focusing enables in vivo imaging of fine neuronal structures in the mouse cortex through the intact skull up to a depth of 750 µm below pia, making high-resolution microscopy in cortex near non-invasive. Functional calcium imaging with high sensitivity and accuracy, and high-precision laser-mediated microsurgery through the intact skull were demonstrated. Moreover, we also achieved in vivo high-resolution imaging of the deep cortex and subcortical hippocampus up to 1.1 mm below pia within the intact brain.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3