High Resolution Tomographic Analysis of in vitro 3D Glioblastoma Tumor Model under Long-Term Drug Treatment

Author:

Ozturk Mehmet S.ORCID,Lee Vivian K.,Zou Hongyan,Friedel Roland H.ORCID,Dai Guohao,Intes Xavier

Abstract

AbstractGlioblastoma multiforme (GBM) is an extremely lethal type of brain tumor as it frequently develops therapeutic resistance over months of chemotherapy cycles. Hence, there is a critical need to provide relevant biological systems to guide the development of new potent personalized drugs but also efficient methodologies that enable personalized prediction of various therapeutic regimens for enhanced patient prognosis. Towards this goal, we report on the development of i) an appropriate in vitro model that mimics the 3D tumor microenvironment and ii) a companion imaging modality that enables to assess this in vitro model in its entirety. More precisely, we developed an integrated platform of bio-printing in vitro 3D GBM models and mesoscopic imaging to monitor tumor growth and invasion along with long-term drug treatment. The newly-developed in vitro 3D model contains tumor spheroids made of patient-derived glioma stem cells with a fluorescent reporter and vascular channels for drug perfusion. The imaging of these thick tissue constructs was performed using our second-Generation Mesoscopic Fluorescence Molecular Tomography (2GMFMT) imaging system which delivered 3D reconstruction of the fluidic channels and the GBM spheroids over the course of pre- and post-drug treatment (up to 70 days). The 2D measurements collected via 2GMFMT was comparable to existing imaging modalities, but 2GMFMT enabled non-sacrificial volumetric monitoring that provided a unique insgiht into the GBM spheroid growth and drug response. Overall, our integrated platform provides customizable in vitro model systems combined with an efficient long-term non-sacrificial imaging for the volumetric change of tumor mass, thus has a great potential in profoundly affecting the drug pipeline for a vast array of pathologies as well as for guiding personalized therapeutic regimen.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3