Author:
Samee Md. Abul Hassan,Bruneau Benoit G.,Pollard Katherine S.
Abstract
AbstractWe hypothesized that transcription factors (TFs) recognize DNA shape without nucleotide sequence recognition. Motivating an independent role for shape, many TF binding sites lack a sequence-motif, DNA shape adds specificity to sequence-motifs, and different sequences can encode similar shapes. We therefore asked if binding sites of a TF are enriched for specific patterns of DNA shape-features, e.g., helical twist. We developed ShapeMF, which discovers these shape-motifs de novo without taking sequence information into account. We find that most TFs assayed in ENCODE have shape-motifs and bind regulatory regions recognizing shape-motifs in the absence of sequence-motifs. When shape- and sequence-recognition co-occur, the two types of motifs can be overlapping, flanking, or separated by consistent spacing. Shape-motifs are prevalent in regions co-bound by multiple TFs. Finally, TFs with identical sequence motifs have different shape-motifs, explaining their binding at distinct locations. These results establish shape-motifs as drivers of TF-DNA recognition complementary to sequence-motifs.
Publisher
Cold Spring Harbor Laboratory