Genie—Gene Finding in Drosophila melanogaster

Author:

Reese Martin G.,Kulp David,Tammana Hari,Haussler David

Abstract

A hidden Markov model-based gene-finding system calledGenie was applied to the genomic Adh region inDrosophila melanogaster as a part of the Genome Annotation Assessment Project (GASP). Predictions from three versions of theGenie gene-finding system were submitted, one based on statistical properties of coding genes, a second included EST alignment information, and a third that integrated protein sequence homology information. All three programs were trained on the providedDrosophila training data. In addition, promoter assignments from an integrated neural network were submitted. The gene assignments overlapped >90% of the 222 annotated genes and 26 possibly novel genes were predicted, of which some might be overpredictions. The system correctly identified the exon boundaries of 70% of the exons in cDNA-confirmed genes and 77% of the exons with the addition of EST sequence alignments. The best of the three Geniesubmissions predicted 19 of the annotated 43 gene structures entirely correct (44%). In the promoter category, only 30% of the transcription start sites could be detected, but by integrating this program as a sensor into Genie the false-positive rate could be dropped to 1/16,786 (0.006%). The results of the experiment on the long contiguous genomic sequence revealed some problems concerning gene assembly in Genie. The results were used to improve the system. We show that Genie is a robust hidden Markov model system that allows for a generalized integration of information from different sources such as signal sensors (splice sites, start codon, etc.), content sensors (exons, introns, intergenic) and alignments of mRNA, EST, and peptide sequences. The assessment showed that Genie could effectively be used for the annotation of complete genomes from higher organisms.

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics (clinical),Genetics

Cited by 121 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3