Exploring Binary Relations for Ontology Extension and Improved Adaptation to Clinical Text

Author:

Slater Luke TORCID,Hoehndorf RobertORCID,Karwath AndreasORCID,Gkoutos Georgios VORCID

Abstract

AbstractBackgroundThe controlled domain vocabularies provided by ontologies make them an indispensable tool for text mining. Ontologies also include semantic features in the form of taxonomy and axioms, which make annotated entities in text corpora useful for semantic analysis. Extending those semantic features may improve performance for characterisation and analytic tasks. Ontology learning techniques have previously been explored for novel ontology construction from text, though most recent approaches have focused on literature, with applications in information retrieval or human interaction tasks. We hypothesise that extension of existing ontologies using information mined from clinical narrative text may help to adapt those ontologies such that they better characterise those texts, and lead to improved classification performance.ResultsWe develop and present a framework for identifying new classes in text corpora, which can be integrated into existing ontology hierarchies. To do this, we employ the Stanford Open Information Extraction algorithm and integrate its implementation into the Komenti semantic text mining framework. To identify whether our approach leads to better characterisation of text, we present a case study, using the method to learn an adaptation to the Disease Ontology using text associated with a sample of 1,000 patient visits from the MIMIC-III critical care database. We use the adapted ontology to annotate and classify shared first diagnosis on patient visits with semantic similarity, revealing an improved performance over use of the base Disease Ontology on the set of visits the ontology was constructed from. Moreover, we show that the adapted ontology also improved performance for the same task over two additional unseen samples of 1,000 and 2,500 patient visits.ConclusionsWe report a promising new method for ontology learning and extension from text. We demonstrate that we can successfully use the method to adapt an existing ontology to a textual dataset, improving its ability to characterise the dataset, and leading to improved analytic performance, even on unseen portions of the dataset.

Publisher

Cold Spring Harbor Laboratory

Reference31 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3