Machine learning with biomedical ontologies

Author:

Kulmanov MaxatORCID,Smaili Fatima ZohraORCID,Gao XinORCID,Hoehndorf RobertORCID

Abstract

Ontologies have long been employed in the life sciences to formally represent and reason over domain knowledge, and they are employed in almost every major biological database. Recently, ontologies are increasingly being used to provide background knowledge in similarity-based analysis and machine learning models. The methods employed to combine ontologies and machine learning are still novel and actively being developed. We provide an overview over the methods that use ontologies to compute similarity and incorporate them in machine learning methods; in particular, we outline how semantic similarity measures and ontology embeddings can exploit the background knowledge in biomedical ontologies, and how ontologies can provide constraints that improve machine learning models. The methods and experiments we describe are available as a set of executable notebooks, and we also provide a set of slides and additional resources at https://github.com/bio-ontology-research-group/machine-learning-with-ontologies.Key pointsOntologies provide background knowledge that can be exploited in machine learning models.Ontology embeddings are structure-preserving maps from ontologies into vector spaces and provide an important method for utilizing ontologies in machine learning. Embeddings can preserve different structures in ontologies, including their graph structures, syntactic regularities, or their model-theoretic semantics.Axioms in ontologies, in particular those involving negation, can be used as constraints in optimization and machine learning to reduce the search space.

Publisher

Cold Spring Harbor Laboratory

Reference90 articles.

1. Deep learning in bioinformatics;Briefings in Bioinformatics,2016

2. Feigenbaum, E. A. (1977). “The art of artificial intelligence – Themes and case studies of knowledge engineering”. In: Proceedings of the Fifth International Joint Conference on Artificial Intelligence. Vol. 2. CAMBRIDGE, MASSACHUSETTS: MASSACHUSETTS INSTITUTE OF TECHNOLOGY.

3. Gkoutos, G. V. , Green, E. C. , Mallon, A. M. , et al. (2004). “Building mouse phenotype ontologies.” In: Pac Symp Biocomput, pp. 178–189.

4. Worm Phenotype Ontology: integrating phenotype data within and beyond the C. elegans community;BMC Bioinformatics,2011

5. Finding our way through phenotypes;PLoS Biol.,2015

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3