Mathematical modelling projections versus the actual course of the COVID-19 epidemic following the nationwide lockdown in Kyrgyzstan

Author:

Moldokmatova AinuraORCID,Estebesova Aida,Dooronbekova Aizhan,Zhumalieva Chynar,Mukambetov Aibek,Abdyldaev Talant,Kubatova Aisuluu,Ibragimov Shamil,Usenbaev Nurbolot,Kutmanova Ainura,White Lisa J

Abstract

AbstractKyrgyzstan was placed under a two-month, nationwide lockdown due to the COVID-19 epidemic, starting on March 25, 2020. Given the highly disruptive effects of the lockdown on the national economy and people’s lives, the government decided not to extend lockdown beyond the initially planned date of May 10, 2020. The strategy chosen by the government was close to the input parameters of our model’s baseline scenario, ‘full lockdown release’, which we presented to policymakers in April 2020, along with various other hypothetical scenarios with managed lockdown release options. To explore whether our model could accurately predict the actual course of the epidemic following the release of lockdown, we compared the outputs of the baseline scenario, such as new cases, deaths, and demand for and occupancy of hospital beds, with actual official reports. Our analysis revealed that the model could accurately predict the timing of the epidemic peak, with a difference of just two weeks, although the magnitude of the peak was overestimated compared with the official statistics. However, it is important to note that the accuracy of the official reports remains debatable, so outputs relating to the size of the epidemic and related pressures on the health system will need to be updated if new evidence becomes available.

Publisher

Cold Spring Harbor Laboratory

Reference35 articles.

1. Stop COVID KG. COVID-19 Kyrgyzstan [Internet]. 2020 [cited 2020 Jul 27]. Available from: https://covid.kg/

2. CoMo Consortium. The COVID-19 International Modelling Consortium [Internet]. 2020 [cited 2020 Dec 7]. Available from: https://como.bmj.com/

3. Aguas R , Hupert N , Shretta R , Celhay O , Moldokmatova A , Arifi F , et al. COVID-19 pandemic modelling in context: uniting people and technology across nations. BMJ Global Health (forthcoming).

4. KLOOP. «Бюрократическое алиби» и психологические ловушки: как Кыргызстан допустил вспышку коронавируса [Internet]. Kloop KG. 2020 [cited 2020 Nov 8]. Available from: https://kloop.kg/blog/2020/07/14/byurokraticheskoe-alibi-i-psihologicheskie-lovushki-kak-kyrgyzstan-dopustil-vspyshku-koronavirusa/

5. Effectiveness of isolation, testing, contact tracing, and physical distancing on reducing transmission of SARS-CoV-2 in different settings: a mathematical modelling study

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3