Fitness selection of hyperfusogenic measles virus F proteins associated with neuropathogenic phenotypes

Author:

Ikegame SatoshiORCID,Hashiguchi Takao,Hung Chuan-Tien,Dobrindt Kristina,Brennand Kristen J,Takeda Makoto,Lee Benhur

Abstract

AbstractMeasles virus (MeV) is resurgent and caused >200,000 deaths in 2019. MeV infection can establish a chronic latent infection of the brain that can recrudesce months to years after recovery from the primary infection. Recrudescent MeV leads to fatal subacute sclerosing panencephalitis (SSPE) or measles inclusion body encephalitis (MIBE) as the virus spreads across multiple brain regions. Most clinical isolates of SSPE/MIBE strains show mutations in the fusion (F) gene that result in a hyperfusogenic phenotype in vitro and allow for efficient spread in primary human neurons. Wild-type MeV receptor binding protein (RBP) is indispensable for manifesting these mutant F phenotypes, even though neurons lack canonical MeV receptors (CD150/SLAMF1 or Nectin-4). How such hyperfusogenic F mutants are selected for, and whether they confer a fitness advantage for efficient neuronal spread is unresolved. To better understand the fitness landscape that allows for the selection of such hyperfusogenic F mutants, we conducted a screen of ≥3.1×105 MeV-F point mutants in their genomic context. We rescued and amplified our genomic MeV-F mutant libraries in BSR-T7 cells under conditions where MeV-F-T461I (a known SSPE mutant), but not wild-type MeV can spread. We recovered known SSPE mutants but also characterized at least 15 novel hyperfusogenic F mutations with a SSPE phenotype. Structural mapping of these mutants onto the pre-fusion MeV-F trimer confirm and extend our understanding of the fusion regulatory domains in MeV-F. Our list of hyperfusogenic F mutants is a valuable resource for future studies into MeV neuropathogenesis and the regulation of paramyxovirus fusion.SignificanceMeasles remains a major cause of infant death globally. On rare occasions, measles virus infection of the central nervous system (CNS) leads to a fatal progressive inflammation of the brain many years after the initial infection. MeV isolates from such CNS infections harbor fusion (F) protein mutations that result in a hyperfusogenic phenotype. The small number of hyperfusogenic MeV-F mutants identified thus far limits our ability to understand how these mutations are selected in the context of CNS infections. We performed a saturating mutagenesis screen of MeV-F to identify a large set of mutants that would mimic the hyperfusogenic phenotype of MeV-F in CNS infection. Characterization of these mutants shed light on other paramyxoviruses known to establish chronic CNS infections.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3