Sugarcane Nitrogen and Irrigation Level Prediction Based on UAV-Captured Multispectral Images at the Elongation Stage

Author:

Li XiuhuaORCID,Ba Yuxuan,Zhang Shimin,Nong Mengling,Zhang Muqing,Wang Ce

Abstract

AbstractIntroductionSugarcane is the main industrial crop for sugar production; its growth status is closely related to fertilizer, water, and light input. Unmanned aerial vehicle (UAV)-based multispectral imagery is widely used for high-throughput phenotyping because it can rapidly predict crop vigor. This paper mainly studied the potential of multispectral images obtained by low-altitude UAV systems in predicting canopy nitrogen (N) content and irrigation level for sugarcane.MethodsAn experiment was carried out on sugarcane fields with three irrigation levels and five nitrogen levels. A multispectral image at a height of 40 m was acquired during the elongation stage, and the canopy nitrogen content was determined as the ground truth. N prediction models, including partial least square (PLS), backpropagation neural network (BPNN), and extreme learning machine (ELM) models, were established based on different variables. A support vector machine (SVM) model was used to recognize the irrigation level.ResultsThe PLS model based on band reflectance and five vegetation indices had better accuracy (R=0.7693, root mean square error (RMSE)=0.1109) than the BPNN and ELM models. Some spectral information from the multispectral image had obviously different features among the different irrigation levels, and the SVM algorithm was used for irrigation level classification. The classification accuracy reached 77.8%.ConclusionLow-altitude multispectral images could provide effective information for N prediction and water irrigation level recognition.

Publisher

Cold Spring Harbor Laboratory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3