1. Akbarian, S., C.-Y. Xu, and S. Lim. 2020. Analysis on the effect of spatial and spectral resolution of different remote sensing data in sugarcane crop yield study. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 5: 655–661. https://doi.org/10.5194/isprs-annals-V-3-2020-655-2020.
2. Alves, M.O., R.V. Ferreira, and R.B. de A. Gallis. 2015a. Optimization of identification of planting failures in sugarcane using geoprocessing. X Brazilian Congress of Geoinformatics.
3. Alves, M.O., R.V. Ferreira, R.B. de Gallis, and José Venâncio Marra Oliveira. 2015b. The use of “agricultural drone” images to identify sugarcane planting failures. VII Sugarcane Production Technology Symposium.
4. Barbosa Júnior, M.R., D. Tedesco, R. de Graaf Corrêa, B.R. de Almeida Moreira, R.P. da Silva, and C. Zerbato. 2021. Mapping gaps in sugarcane by UAV RGB imagery: The lower and earlier the flight, the more accurate. Agronomy. https://doi.org/10.3390/agronomy11122578.
5. Basnayake, J., P. Lakshmanan, P. Jackson, S. Chapman, and S. Natarajan. 2016. Canopy temperature: A predictor of sugarcane yield for irrigated and rainfed conditions. Proceedings of the International Society of Sugar Cane Technologists 29: 1–9.