EccDNA formation is dependent on MMEJ, repressed by c-NHEJ pathway, and stimulated by DNA double-strand break

Author:

Paulsen TeressaORCID,Malapati Pumoli,Eki Rebeka,Abbas Tarek,Dutta Anindya

Abstract

ABSTRACTExtrachromosomal circular DNAs (eccDNA) are widespread in normal and cancer cells and are known to amplify oncogenic genes. However, the mechanisms that form eccDNA have never been fully elucidated due to the complex interactions of DNA repair pathways and lack of a method to quantify eccDNA abundance. Through the development of a sensitive and quantitative assay for eccDNA we show that the formation of eccDNA is through resection dependent repair of double-strand DNA breaks, especially micro-homology mediated end joining, and through mismatch repair. The most significant decreases in eccDNA levels occurred in cells lacking PARP1, POLQ, NBS1, RAD54, and FAN1. Further, a significant increase in eccDNA occurred in cells lacking c-NHEJ proteins DNA-PKcs, XRCC4, XLF, LIG4 and 53BP1. This suggests that when alt-NHEJ pathways are utilized to repair DNA breaks by necessity, the formation of eccDNA is increased. Induced and site-directed double-strand DNA breaks increase eccDNA formation, even from a single break. Additionally, we find that eccDNA levels accumulate as cells undergo replication in S-phase and that levels of eccDNA are decreased if DNA synthesis is prevented. Together, these results show that the bulk of eccDNA form by resection based alt-NHEJ pathways, especially during DNA replication and the repair of double-strand breaks.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3