Processive Dynamics of the Usher Assembly Platform During Uropathogenic Escherichia coli P Pilus Biogenesis

Author:

Du Minge,Yuan Zuanning,Werneburg Glenn T.,Henderson Nadine S.,Chauhan Hemil,Kovach Amanda,Zhao Gongpu,Johl Jessica,Li HuilinORCID,Thanassi David G.ORCID

Abstract

ABSTRACTUropathogenic Escherichia coli (UPEC) assemble hair-like surface structures termed pili or fimbriae to initiate infection of the urinary tract. P pili mediate the adherence of UPEC to the kidney epithelium, facilitating bacterial colonization and pyelonephritis1. P pili are assembled through the conserved chaperone-usher (CU) pathway2-4. In this pathway, a dedicated chaperone facilitates the folding of nascent pilus subunits in the periplasm and an integral outer membrane (OM) protein termed the usher provides the assembly platform and secretion channel for the pilus fiber. Much of the structural and functional understanding of the CU pathway has been gained through investigations of type 1 pili, which promote UPEC binding to the bladder epithelium and the development of cystitis5. In contrast, the structural basis for P pilus biogenesis at the usher has remained elusive. This is in part due to the flexible and variable-length P pilus tip fiber, creating structural heterogeneity, as well as difficulties in isolating stable P pilus assembly intermediates from bacteria. Here, we have devised a method to circumvent these hindrances and determined cryo-EM structures of the activated PapC usher in the process of secreting two- and three-subunit P pilus assembly intermediates. These structures show processive steps in P pilus biogenesis, reveal differences between P and type 1 pili, and capture new conformational dynamics of the usher assembly machine.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3