Multiple clones of colistin-resistant Salmonella enterica carrying mcr-1 plasmids in meat products and patients in Northern Thailand

Author:

Patchanee PrapasORCID,Chokesajjawatee NipaORCID,Santiyanont Pannita,Chuammitri PhongsakornORCID,Deeudom Manu,Monteith WilliamORCID,Sheppard Samuel K.ORCID,Pascoe BenORCID,Prasertsee Teerarat

Abstract

AbstractSalmonella spp. is an important foodborne pathogen associated with consumption of contaminated food, especially livestock products. Antimicrobial resistance (AMR) in Salmonella has been reported globally and increasing AMR in food production is a major public health issue worldwide. The objective of this study was to describe the genetic relatedness among Salmonella enterica isolates, which displayed identical DNA fingerprint profiles. Ten S. enterica isolates were selected from meat and human cases with an identical rep-PCR profile of serovars Rissen (n=4), Weltevreden (n=4), and Stanley (n=2). We used long-read whole genome sequencing (WGS) on the MinION sequencing platform to type isolates and investigate in silico the presence of specific AMR genes. Antimicrobial susceptibility testing was tested by disk diffusion and gradient diffusion method to corroborate the AMR phenotype. Multidrug resistance and resistance to more than one antimicrobial agent were observed in eight and nine isolates, respectively. Resistance to colistin with an accompanying mcr-1 gene was observed among the Salmonella isolates. The analysis of core genome and whole genome MLST revealed that the Salmonella from meat and human salmonellosis were closely genetic related. Hence, it could be concluded that meat is one of the important sources for Salmonella infection in human.HighlightsColistin resistance detected in 2 clones from 2 different Salmonella enterica serovars (Rissen and Weltevreden) with accompanying plasmid-borne mcr-1 gene from the food production chain and human clinical salmonellosis.High prevalence of multidrug resistant isolates and resistance to more than one antimicrobial agent.MinION has potential for mobile, rapid and accurate application in veterinary genomic epidemiology studies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3