LazySampling and LinearSampling: Fast Stochastic Sampling of RNA Secondary Structure with Applications to SARS-CoV-2

Author:

Zhang He,Zhang LiangORCID,Li SizhenORCID,Mathews David H.ORCID,Huang LiangORCID

Abstract

Many RNAs fold into multiple structures at equilibrium. The classical stochastic sampling algorithm can sample secondary structures according to their probabilities in the Boltzmann ensemble, and is widely used. However, this algorithm, consisting of a bottom-up partition function phase followed by a top-down sampling phase, suffers from three limitations: (a) the formulation and implementation of the sampling phase are unnecessarily complicated; (b) the sampling phase repeatedly recalculates many redundant recursions already done during the partition function phase; (c) the partition function runtime scales cubically with the sequence length. These issues prevent stochastic sampling from being used for very long RNAs such as the full genomes of SARS-CoV-2. To address these problems, we first adopt a hypergraph framework under which the sampling algorithm can be greatly simplified. We then present three sampling algorithms under this framework, among which the LazySampling algorithm is the fastest by eliminating redundant work in the sampling phase via on-demand caching. Based on LazySampling, we further replace the cubic-time partition function by a linear-time approximate one, and derive LinearSampling, an end-to-end linear-time sampling algorithm that is orders of magnitude faster than the standard one. For instance, LinearSampling is 176× faster (38.9s vs. 1.9h) than Vienna RNAsubopt on the full genome of Ebola virus (18,959 nt). More importantly, LinearSampling is the first RNA structure sampling algorithm to scale up to the full-genome of SARS-CoV-2 without local window constraints, taking only 69.2 seconds on its reference sequence (29,903 nt). The resulting sample correlates well with the experimentally-guided structures. On the SARS-CoV-2 genome, LinearSampling finds 23 regions of 15 nt with high accessibilities, which are potential targets for COVID-19 diagnostics and drug design.See code: https://github.com/LinearFold/LinearSampling

Publisher

Cold Spring Harbor Laboratory

Reference43 articles.

1. Non–coding RNA genes and the modern RNA world

2. The chemical repertoire of natural ribozymes

3. Long Noncoding RNAs: Past, Present, and Future

4. New molecular engineering approaches for crystallographic studies of large RNAs;Current Opinion in Structural Biology,2014

5. Advances that facilitate the study of large RNA structure and dynamics by nuclear magnetic resonance spectroscopy;Wiley Interdisciplinary Reviews: RNA,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3