LinearTurboFold: Linear-Time Global Prediction of Conserved Structures for RNA Homologs with Applications to SARS-CoV-2

Author:

Li SizhenORCID,Zhang HeORCID,Zhang LiangORCID,Liu KaiboORCID,Liu BoxiangORCID,Mathews David H.ORCID,Huang LiangORCID

Abstract

The constant emergence of COVID-19 variants reduces the effectiveness of existing vaccines and test kits. Therefore, it is critical to identify conserved structures in SARS-CoV-2 genomes as potential targets for variant-proof diagnostics and therapeutics. However, the algorithms to predict these conserved structures, which simultaneously fold and align multiple RNA homologs, scale at best cubically with sequence length, and are thus infeasible for coronaviruses, which possess the longest genomes (∼30,000 nt) among RNA viruses. As a result, existing efforts on modeling SARS-CoV-2 structures resort to single sequence folding as well as local folding methods with short window sizes, which inevitably neglect long-range interactions that are crucial in RNA functions. Here we present LinearTurboFold, an efficient algorithm for folding RNA homologs that scales linearly with sequence length, enabling unprecedented global structural analysis on SARS-CoV-2. Surprisingly, on a group of SARS-CoV-2 and SARS-related genomes, LinearTurbo-Fold’s purely in silico prediction not only is close to experimentally-guided models for local structures, but also goes far beyond them by capturing the end-to-end pairs between 5’ and 3’ UTRs (∼29,800 nt apart) that match perfectly with a purely experimental work. Furthermore, LinearTurboFold identifies novel conserved structures and conserved accessible regions as potential targets for designing efficient and mutation-insensitive small-molecule drugs, antisense oligonucleotides, siRNAs, CRISPR-Cas13 guide RNAs and RT-PCR primers. LinearTurboFold is a general technique that can also be applied to other RNA viruses and full-length genome studies, and will be a useful tool in fighting the current and future pandemics.Significance StatementConserved RNA structures are critical for designing diagnostic and therapeutic tools for many diseases including COVID-19. However, existing algorithms are much too slow to model the global structures of full-length RNA viral genomes. We present LinearTurboFold, a linear-time algorithm that is orders of magnitude faster, making it the first method to simultaneously fold and align whole genomes of SARS-CoV-2 variants, the longest known RNA virus (∼30 kilobases). Our work enables unprecedented global structural analysis and captures long-range interactions that are out of reach for existing algorithms but crucial for RNA functions. LinearTurboFold is a general technique for full-length genome studies and can help fight the current and future pandemics.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3