Shedding Light on Microbial Dark Matter with A Universal Language of Life

Author:

Hoarfrost AORCID,Aptekmann AORCID,Farfañuk G,Bromberg YORCID

Abstract

AbstractThe majority of microbial genomes have yet to be cultured, and most proteins predicted from microbial genomes or sequenced from the environment cannot be functionally annotated. As a result, current computational approaches to describe microbial systems rely on incomplete reference databases that cannot adequately capture the full functional diversity of the microbial tree of life, limiting our ability to model high-level features of biological sequences. The scientific community needs a means to capture the functionally and evolutionarily relevant features underlying biology, independent of our incomplete reference databases. Such a model can form the basis for transfer learning tasks, enabling downstream applications in environmental microbiology, medicine, and bioengineering. Here we present LookingGlass, a deep learning model capturing a “universal language of life”. LookingGlass encodes contextually-aware, functionally and evolutionarily relevant representations of short DNA reads, distinguishing reads of disparate function, homology, and environmental origin. We demonstrate the ability of LookingGlass to be fine-tuned to perform a range of diverse tasks: to identify novel oxidoreductases, to predict enzyme optimal temperature, and to recognize the reading frames of DNA sequence fragments. LookingGlass is the first contextually-aware, general purpose pre-trained “biological language” representation model for short-read DNA sequences. LookingGlass enables functionally relevant representations of otherwise unknown and unannotated sequences, shedding light on the microbial dark matter that dominates life on Earth.AvailabilityThe pretrained LookingGlass model and the transfer learning-derived models demonstrated in this paper are available in the LookingGlass release v1.01. The open source fastBio Github repository and python package provides classes and functions for training and fine tuning deep learning models with biological data2. Code for reproducing analyses presented in this paper are available as an open source Github repository3.

Publisher

Cold Spring Harbor Laboratory

Reference75 articles.

1. Phylogenetically Novel Uncultured Microbial Cells Dominate Earth Microbiomes;mSystems,2018

2. High proportions of bacteria and archaea across most biomes remain uncultured;ISME J.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3