Elucidating the functional roles of prokaryotic proteins using big data and artificial intelligence

Author:

Ardern Zachary12,Chakraborty Sagarika1,Lenk Florian1,Kaster Anne-Kristin1ORCID

Affiliation:

1. Institute for Biological Interfaces 5 (Institut für Biologische Grenzflächen IBG 5), Karlsruhe Institute of Technology (KIT) , 76344 Eggenstein-Leopoldshafen, Germany

2. Wellcome Trust Sanger Institute , Hinxton, Saffron Walden CB10 1RQ, United Kingdom

Abstract

AbstractAnnotating protein sequences according to their biological functions is one of the key steps in understanding microbial diversity, metabolic potentials, and evolutionary histories. However, even in the best-studied prokaryotic genomes, not all proteins can be characterized by classical in vivo, in vitro, and/or in silico methods—a challenge rapidly growing alongside the advent of next-generation sequencing technologies and their enormous extension of ‘omics’ data in public databases. These so-called hypothetical proteins (HPs) represent a huge knowledge gap and hidden potential for biotechnological applications. Opportunities for leveraging the available ‘Big Data’ have recently proliferated with the use of artificial intelligence (AI). Here, we review the aims and methods of protein annotation and explain the different principles behind machine and deep learning algorithms including recent research examples, in order to assist both biologists wishing to apply AI tools in developing comprehensive genome annotations and computer scientists who want to contribute to this leading edge of biological research.

Funder

Karlsruhe Institute of Technology

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Microbiology

Reference218 articles.

1. Protein secondary structure prediction (PSSP) using different machine algorithms;Afify;Egypt J Med Hum Genet,2021

2. Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis;Aguiar-Pulido;Evol Bioinform Online,2016

3. Unified rational protein engineering with sequence-based deep representation learning;Alley;Nat Methods,2019

4. A systematic review on supervised and unsupervised machine learning algorithms for data science;Alloghani,2020

5. An introduction to kernel and nearest-neighbor nonparametric regression;Altman;Am Stat,1992

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3