Whole-genome sequencing of Chinese native goat offers biological insights into cashmere fiber formation

Author:

Han Hu,Yang Man-Man,Dan Jiang,Zhang Xing-Ju,Wei Qiang,Chen Tao,Wang Qi-Ju,Yang Cheng-Ye,Wulan Bater,Zhang Ting-Ting,Gen Gang,Mengkedala ,Li Bin,Deng Wei-Dong,Miao Ze-Pu,Wang Ran,Zhang Qing-Feng,Li Lin,Chao Sheng-Yu,Fang Ming,Li Yong

Abstract

AbstractCashmere evolved naturally in the goat, and almost all breeds of goat can produce more or less cashmere fibers. However, the genetic alterations underlying cashmere trait selection are still unclear.We sequenced 120 Chinese native goat including two cashmere goat breeds (Ujumain, Chaidamu) and six ordinary goat breeds (Jining Gray, Matou, Guizhou Black, Jintang Black, Yunnan Black Bone, Chengdu Brown). The genome-wide selective sweep of cashmere goat and ordinary goat revealed a novel set of candidate genes as well as pathways, such as Nuclear factor kappa-B and Wnt Signaling pathways. Of them, the LHX2 gene regulating hair follicle development, was evident from the strongest selection signal when comparing the Uhumqin cashmere goat and ordinary goat. Interestingly, we identified a 582bp deletion at 367 kb upstream of LHX2 with higher frequency in cashmere goats and their ancient relatives. This mutation probably rises along the breeding procedures, and is putatively responsible for cashmere production and diameter, as revealed by association studies. Luciferase assay shows that the deletion, which acts as an insulator, restrains the expression of LHX2 by interfering its upstream enhancers.Our study discovers a novel insulator of the LHX2 involved in regulating cashmere production and diameter, which would be beneficial to understanding hair follicle development and regeneration. Our findings also provide new insights into the genetic formation of cashmere, and facilitate subsequent molecular breeding for cashmere goat improvement.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3