A non-transcriptional function of Yap orchestrates the DNA replication program

Author:

García Rodrigo Meléndez,Haccard OlivierORCID,Chesneau Albert,Narassimprakash Hemalatha,Roger Jérôme EORCID,Perron MurielORCID,Marheineke KathrinORCID,Bronchain Odile

Abstract

AbstractIn multicellular eukaryotic organisms, the initiation of DNA replication occurs asynchronously throughout S-phase according to a regulated replication timing program. Here, using Xenopus egg extracts, we showed that Yap (Yes-associated protein 1), a downstream effector of the Hippo signaling pathway, is required for the control of DNA replication dynamics. We found that Yap is recruited to chromatin at the start of DNA replication and that Yap depletion accelerates DNA replication dynamics by increasing the number of activated replication origins. Furthermore, we identified Rif1, a major regulator of the DNA replication timing program, as a novel Yap binding protein. In Xenopus embryos, using a Trim-Away approach during cleavage stages devoid of transcription, we found that both Yap and Rif1 depletion trigger an acceleration of cell divisions, suggesting a shorter S-phase by alterations of the replication program. Finally, our data show that Rif1 knockdown leads to defects in the partitioning of early versus late replication foci in retinal stem cells, as we previously showed for Yap. Altogether, our findings unveil a non-transcriptional role for Yap in regulating replication dynamics. We propose that Yap and Rif1 function as breaks to control the DNA replication program in early embryos and post-embryonic stem cells.HighlightsYap is recruited to chromatin during DNA replication dependent on pre-replicative complex assembly.Yap controls DNA replication dynamics by limiting origin firing.The replication timing regulatory factor 1, Rif1, is a novel Yap binding-partner.Both Yap and Rif1 regulate the length of the first embryonic cell cycles.Like Yap, Rif1 controls retinal stem cell DNA replication timing.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3