A connectivity signature for glioblastoma

Author:

Hai Ling,Hoffmann Dirk C,Mandelbaum Henriette,Xie Ruifan,Ito Jakob,Jung Erik,Weil Sophie,Sievers Philipp,Venkataramani Varun,Azorin Daniel Dominguez,Ernst Kati,Reibold Denise,Will Rainer,Suvà Mario L.,Herold-Mende Christel,Sahm FelixORCID,Winkler Frank,Schlesner Matthias,Wick Wolfgang,Kessler TobiasORCID

Abstract

AbstractTumor cell extensions called tumor microtubes (TMs) in glioma resemble neurites during neurodevelopment and connect glioma cells to a network that has considerable relevance for tumor progression and therapy resistance. The determination of interconnectivity in individual tumors has been challenging and the impact of tumor cell connectivity on patient survival remained unresolved so far. Here, a connectivity signature from single-cell RNA-sequenced (scRNA-Seq) xenografted primary glioblastoma (GB) cells was established and clinically validated. Thirty-four of 40 connectivity genes were related to neurogenesis, neural tube development or glioma progression, including the TM-network-relevant GAP43 gene. Astrocytic-like and mesenchymal-like GB cells had the highest connectivity signature scores in scRNA-Seq data of patient-derived xenografts and patient samples. In 230 human GBs, high connectivity correlated with the mesenchymal expression subtype, TP53 wildtype, and with dismal patient survival. CHI3L1 was identified as a robust molecular marker of connectivity. Thus, the connectivity signature allows novel insights into brain tumor biology, provides a proof-of-principle that tumor cell connectivity is relevant for patients’ prognosis, and serves as a robust biomarker that can be used for future clinical trials.Statement of significanceIntegration of GB cells into functional networks drives tumor progression and resistance. Here, we established and validated a novel connectivity gene expression signature of single GB cells and whole tumors that can be easily applied to clinical and preclinical samples. It is shown that connectivity is determining prognosis combining molecular, functional and clinical insights into the disease.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3