Integrative spatial analysis reveals a multi-layered organization of glioblastoma

Author:

Greenwald Alissa C.,Darnell Noam Galili,Hoefflin Rouven,Simkin Dor,Gonzalez-Castro L. Nicolas,Mount Christopher,Hirsch Dana,Nomura Masashi,Talpir Tom,Kedmi Merav,Goliand Inna,Medici Gioele,Li Baoguo,Keren-Shaul Hadas,Weller Michael,Addadi Yoseph,Neidert Marian C.,Suvá Mario L.,Tirosh Itay

Abstract

SummaryGlioma contains malignant cells in diverse states. Hypoxic regions are associated with a unique histology of pseudopalisading cells, while other regions appear to have limited histological organization, reflecting the diffuse nature of glioma cells. Here, we combine spatial transcriptomics with spatial proteomics and novel computational approaches to define glioma cellular states at high granularity and uncover their organization. We find three prominent modes of cellular organization. First, cells in any given state tend to be spatially clustered, such that tumors are composed of small local environments that are each typically enriched with one major cellular state. Second, specific pairs of states preferentially reside in proximity across multiple scales. Despite the unique composition of each tumor, this pairing of states remains largely consistent across tumors. Third, the pairwise interactions that we detect collectively define a global architecture composed of five layers. Hypoxia appears to drive this 5-layered organization, as it is both associated with unique states of surrounding cells and with a long-range organization that extends from the hypoxic core to the infiltrative edge of the tumor. Accordingly, tumor regions distant from any hypoxic foci and tumors that lack hypoxia such as IDH-mutant glioma are less organized. In summary, we provide a conceptual framework for the organization of gliomas at the resolution of cellular states and highlight the role of hypoxia as a long-range tissue organizer.

Publisher

Cold Spring Harbor Laboratory

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3