Abstract
AbstractSearch requires balancing exploring for more options and exploiting the ones previously found. Individuals foraging in a group face another trade-off: whether to engage in social learning to exploit the solutions found by others or to solitarily search for unexplored solutions. Social learning can decrease the costs of finding new resources, but excessive social learning can decrease the exploration for new solutions. We study how these two trade-offs interact to influence search efficiency in a model of collective foraging under conditions of varying resource abundance, resource density, and group size. We modeled individual search strategies as Lévy walks, where a power-law exponent (μ) controlled the trade-off between exploitative and explorative movements in individual search. We modulated the trade-off between individual search and social learning using a selectivity parameter that determined how agents responded to social cues in terms of distance and likely opportunity costs. Our results show that social learning is favored in rich and clustered environments, but also that the benefits of exploiting social information are maximized by engaging in high levels of individual exploration. We show that selective use of social information can modulate the disadvantages of excessive social learning, especially in larger groups and with limited individual exploration. Finally, we found that the optimal combination of individual exploration and social learning gave rise to trajectories with μ ≈ 2 and provide support for the general optimality such patterns in search. Our work sheds light on the interplay between individual search and social learning, and has broader implications for collective search and problem-solving.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献