Charting ESCRT function reveals distinct and non-compensatory roles in blood progenitor maintenance and lineage choice in Drosophila

Author:

Ray ArindamORCID,Rai YashashwineeORCID,Inamdar Maneesha SORCID

Abstract

AbstractTissue heterogeneity permits diverse biological outputs in response to systemic signals but requires context-dependent spatiotemporal regulation of a limited number of signaling circuits. In addition to their stereotypical roles of transport and cargo sorting, endocytic networks provide rapid, adaptable, and often reversible means of signaling. Aberrant function of the Endosomal Sorting Complex Required for Transport (ESCRT) components results in ubiquitinated cargo accumulation, uncontrolled signaling and neoplastic transformation. However, context-specific effects of ESCRT on developmental decisions are not resolved. By a comprehensive spatiotemporal profiling of ESCRT in Drosophila hematopoiesis in vivo, here we show that pleiotropic ESCRT components have distinct effects on blood progenitor maintenance, lineage choice and response to immune challenge. Of all 13 core ESCRT components tested, only Vps28 and Vp36 were required in all progenitors, whereas others maintained spatiotemporally defined progenitor subsets. ESCRT depletion also sensitized posterior progenitors that normally resist differentiation, to respond to immunogenic cues. Depletion of the critical Notch signaling regulator Vps25 did not promote progenitor differentiation at steady state but made younger progenitors highly sensitive to wasp infestation, resulting in robust lamellocyte differentiation. We identify key heterotypic roles for ESCRT in controlling Notch activation and thereby progenitor proliferation and differentiation. Further, we show that ESCRT ability to regulate Notch activation depends on progenitor age and position along the anterior-posterior axis. The phenotypic range and disparity in signaling upon depletion of components provides insight into how ESCRT may tailor developmental diversity. These mechanisms for subtle control of cell phenotype may be applicable in multiple contexts.SignificanceThe Endosomal Sorting Complex Required for Transport (ESCRT) machinery sorts ubiquitinated cargo for degradation or recycling. Aberrant ESCRT function is associated with many blood disorders. We did a comprehensive functional analysis of all 13 core ESCRT components in maintenance and differentiation of Drosophila larval blood progenitors. We show that ESCRT have diverse and non-compensatory functions in blood progenitors. ESCRT depletion from progenitors affects ubiquitination status cell autonomously and independent of progenitor maintenance. ESCRT function is more critical to maintain older progenitors and to prevent Notch-dependent crystal cell differentiation. Further, ESCRT depletion sensitizes refractile younger progenitors for lamellocyte differentiation. Our in situ developmental map of ESCRT function reveals critical checkpoints for cell fate choice and new paradigms for generating progenitor heterogeneity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3