Comparative analysis of ESCRT-I, ESCRT-II and ESCRT-III function in Drosophila by efficient isolation of ESCRT mutants

Author:

Vaccari Thomas1,Rusten Tor Erik2,Menut Laurent1,Nezis Ioannis P.2,Brech Andreas2,Stenmark Harald2,Bilder David1

Affiliation:

1. Department of Molecular and Cell Biology, University of California, Berkeley, CA 94702, USA

2. Centre for Cancer Biomedicine and Department of Biochemistry, the Norwegian Radium Hospital, University of Oslo, Montebello, N-0310 Oslo, Norway

Abstract

ESCRT proteins were initially isolated in yeast as a single functional set of conserved components controlling endosomal cargo sorting and multivesicular body (MVB) biogenesis. Recent work has suggested that metazoan ESCRT proteins might have more functionally diverse roles, but the limited availability of ESCRT mutants in species other than yeast has hampered a thorough analysis. Here, we used a genetic screening strategy based on both cell-autonomous and non-autonomous growth-promotion phenotypes to isolate null mutations in nearly half of the ESCRT-encoding genes of Drosophila, including components of ESCRT-I, ESCRT-II and ESCRT-III complexes. All ESCRT components are required for trafficking of ubiquitylated proteins and are required to prevent excess Notch and EGFR signaling. However, cells lacking certain ESCRT-III components accumulate fewer ubiquitylated molecules in endosomes and display reduced degrees of cell proliferation compared with those lacking components of ESCRT-I and ESCRT-II. Moreover, although we find by ultrastructural analysis that MVB formation is impaired in ESCRT-I and ESCRT-II mutant cells, MVB biogenesis still occurs to some degree in ESCRT-III mutant cells. This work highlights the multiple cell biological and developmental roles of ESCRT proteins in Drosophila, suggests that the metazoan ESCRT-I, ESCRT-II and ESCRT-III complexes do not serve identical functions, and provides the basis for an extensive analysis of metazoan ESCRT function.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3